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Abstract

We address the problem of coupling non-Hermitian systems, treated as
fundamental rather than effective theories, to the electromagnetic field. In
such theories the observables are not the x and p appearing in the Hamiltonian,
but quantities X and P constructed by means of the metric operator. Following
the analogous procedure of gauging a global symmetry in Hermitian quantum
mechanics we find that the corresponding gauge transformation in X implies
minimal substitution in the form P → P − eA(X). We discuss how
the relevant matrix elements governing electromagnetic transitions may be
calculated in the special case of the Swanson Hamiltonian, where the equivalent
Hermitian Hamiltonian h is local, and in the more generic example of the
imaginary cubic interaction, where H is local but h is not.

PACS numbers: 03.65.Ca, 11.30.Er, 02.30.Mv

1. Introduction

Recent interest in Hamiltonians that are non-Hermitian but nonetheless have a real spectrum
dates from the pioneering paper of Bender and Boettcher [1], which gave strong numerical
and analytical evidence that the spectrum of the class of Hamiltonians

H = p2 + m2x2 − (ix)N (1)

was completely real and positive for N � 2, and attributed this reality to the (unbroken)
PT symmetry of the Hamiltonian. Subsequently a large number of PT -symmetric models
were explored (see, e.g. [2]), and it was found that the phenomenon was rather general.
The drawback that the natural metric on the Hilbert space, with overlap

∫
ψi(−x)ψj (x) dx,

was not positive definite was overcome by the realization [3] that one could construct an
alternative, positive-definite metric involving the so-called C operator. The formalism was
further developed by Mostafazadeh [4], building on earlier work by Scholtz et al [5]. In
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particular he showed [6] that such a Hamiltonian H was related by a similarity transformation
to an equivalent Hermitian Hamiltonian h. The key relation is the quasi-Hermiticity of H:

H † = ηHη−1, (2)

where η is Hermitian and positive definite. η is related to the C operator by η = CP , and it
is frequently extremely useful [7] to write it in the exponential form η = e−Q. Occasionally
η can be constructed exactly (see, for example, [8–12]), but more typically it can only be
constructed in perturbation theory, for example for the ix3 model [13].

From equation (2) we can immediately deduce that

h ≡ ρHρ−1 (3)

is Hermitian, where ρ = e− 1
2 Q. Other operators A will also be observables, having real

eigenvalues, if they are also quasi-Hermitian, i.e.

A† = ηAη−1, (4)

and they again are related by the similarity transformation to Hermitian counterparts a:

A = ρ−1aρ. (5)

The similarity transformation also transforms the states of the Hermitian system, |ϕ〉, to
those of the quasi-Hermitian system, |ψ〉:

|ψ〉 = ρ−1|ϕ〉. (6)

This implies that the matrix element of an operator is

〈O〉ij = 〈ψi |ηO|ψj 〉. (7)

In particular, the matrix elements of an observable can be written as

〈ψi |ηA|ψj 〉 = 〈ϕi |ρ−1η(ρ−1aρ)ρ−1|ϕj 〉
= 〈ϕi |a|ϕj 〉. (8)

A very important observation is that

H(x,p) = H(ρXρ−1, ρPρ−1)

= ρH(X,P )ρ−1

= h(X,P ). (9)

Thus, an alternative way of finding h is to calculate the observables X and P and then rewrite
H(x,p) in terms of them.

The above concerns quasi-Hermitian systems considered in isolation. However, important
conceptual issues arise when one attempts to consider such systems in interaction with an
otherwise Hermitian environment. For example, [14] examined a non-Hermitian analogue of
the Stern–Gerlach experiment in which the role of the intermediate inhomogeneous magnetic
field flipping the spin is taken over by an apparatus described by a non-Hermitian Hamiltonian.
This type of set-up has been further discussed and elaborated in a series of papers by various
authors [15–20].

Again, scattering gives rise to problems, since unitarity, as conventionally defined, is
generically not satisfied for a PT -symmetric Hamiltonian. Unitarity can be restored, by use
of the η metric, but then the concept of ‘in’ and ‘out’ states has to be drastically [21, 22], or
in some cases [23] less drastically, revised.

This paper is concerned with another such issue, namely how one couples a charged
particle described by a quasi-Hermitian Hamiltonian to the electromagnetic field, following
as closely as possible the well-known gauging procedure for a Hermitian Hamiltonian. This
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problem has been previously dealt with by Fariah and Fring [24] in a treatment which in
many ways is more sophisticated than this paper, dealing with pulses rather than plane waves
and going beyond first-order perturbation theory. However, the subtleties arising from the
difference between x and X (see equation (22)) were not encountered there because the
calculations were done entirely within the framework of the dipole approximation, where
the electromagnetic potential A is just a function of time.

2. Brief review of the standard procedure

In standard quantum mechanics the probability density is just |ψ(x)|2, which is unchanged
under a change of phase of the wavefunction: ψ → eieαψ provided that α is a real constant. If
we try to extend this to α = α(x), a real function of x, an extra term appears in the Schrödinger
equation, because now p̂ eieαψ = eieα(p̂ + e∇α)ψ . We cancel this additional ∇α term by
minimal substitution:

p → p − eA. (10)

Then under the combined transformations{
ψ → ψ ′ = eieαψ

A → A′ = A − ∇α,
(11)

we obtain (p̂ − eA)ψ → eieα(p̂ − eA)ψ , as required. Moreover, the electric and magnetic
fields are unchanged by the gauge transformation (22).

So for a normal Hamiltonian of the form

H = p2

2m
+ V (x), (12)

the coupling to the vector potential is −e(A · p + p · A)/(2m). In first-order perturbation
theory a standard procedure then gives the transition rate between the states |i〉 and |j 〉
induced by a plane wave

A(x, t) =
∫

dω Ã(ω)ei(k · x−ωt) + c.c. (13)

as

wij ∝ e2

m2
|〈i|pA|j 〉|2 (14)

in the dipole approximation eik · x ≈ 1 over the range of the interaction. Here the constant of
proportionality is (2π/h̄2)Ã(ωij )

2, where ωij = (Ei − Ej)/h̄ and pA is the projection of p in
the direction of A.

The matrix element 〈i|pA|j 〉 can be recast in terms of 〈i|xA|j 〉, where xA is similarly
defined, by

(Ei − Ej)〈i|x|j 〉 = 〈i|[H,x]|j 〉 = − ih̄

m
〈i|p|j 〉, (15)

so that

〈i|pA|j 〉 = imωij 〈i|xA|j 〉. (16)
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3. Quasi-Hermitian quantum mechanics

The total1 probability is now 〈ψ |η|ψ〉, where η is the metric operator. This is no longer
invariant under |ψ〉 → eieα(x)|ψ〉, except in the special case where η = η(x) so that [η,x] = 0.

It is, however, invariant under

|ψ〉 → eieα(X)|ψ〉, (17)

where X is the observable X = ρ−1xρ. For then

〈ψ |η|ψ〉 → 〈ψ |e−ieα(X)†η eieα(X)|ψ〉
= 〈ψ |η|ψ〉, (18)

since X†η = ηX . Note that, in terms of the eigenstates |ϕ〉 of h, equation (17) corresponds to

|ϕ〉 → ρeieα(X)ρ−1|ϕ〉 = eieα(x)|ϕ〉. (19)

Since we are using X in the exponent in equation (17), we will also need to write H in
terms of X and the corresponding conjugate observable P , according to equation (9), i.e.

H(x,p) = h(X,P ). (20)

The minimal substitution we require, in h(X,P ), is then

P → P − eA(X), (21)

with the combined transformations{
|ψ〉 → |ψ ′〉 = eieα(X)|ψ〉
A(X) → A′(X) = A(X) − ∇Xα(X).

(22)

It is important to note that because X and x do not commute, the argument of A in
equation (21) must be X rather than x in order to ensure that

e−ieα(X)(P − eA′) eieα(X) = P − eA.

Given the gauge transformation of equation (22), we are obliged to define B(X) =
∇X × A(X), and the Fourier transform of equation (13) will also have to be rewritten in
terms of X . How are we to interpret this, when X is a complicated non-local operator? The
answer is that the external, classical electromagnetic potential is in reality A(ξ), where ξ is a
real vector of position. Then B(ξ) = ∇ξ × A(ξ), and equation (13) becomes

A(ξ, t) =
∫

dω Ã(ω) ei(k · ξ−ωt) + c.c. (23)

Then, in the interaction with the non-Hermitian system, ξ is replaced by the operator X ,
of which it is the eigenvalue. This is in parallel with the normal practice whereby in
equation (13) it is understood that x is a numerical vector, but in its interaction with a
Hermitian system x is interpreted as the operator x̂.

If h is of standard form, p2/(2μ) + U(x), the scattering rate is

wij ∝ e2

μ2
|〈ψi |ηPA|ψj 〉|2

= e2

μ2
|〈ϕi |pA|ϕj 〉|2, (24)

and the second form of the matrix element can then be rewritten, as in the Hermitian case, as
a matrix element of xA, namely

〈ϕi |pA|ϕj 〉 = iμωij 〈ϕi |xA|ϕj 〉. (25)

1 Note that the probability density 
(x) = 〈ψ |ρ|x〉〈x|ρ|ψ〉 is also invariant under the transformation of
equation (17).
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3.1. The Swanson model

A much-studied example where h, but not H, is of standard form is the Swanson Hamiltonian
[8], whose three-dimensional version reads

H = p2

2m1
+

1

2
iωε{xr, pr} +

1

2
m2ω

2x2, (26)

with m2 = (1 − ε2)m1. There is actually a one-parameter family [25] of Qs, from which we
consider just the two cases (i) Q = Q(x) and (ii) Q = Q(p). In either case the equivalent
Hermitian Hamiltonian is just a harmonic oscillator of the form

h(x,p) = p2

2μ
+

1

2
μω2x2. (27)

(i) Q = Q(x) = εm1ωx2. This amounts to completing the square as

H = (p + iεm1ωx)2

2m1
+

1

2
m1ω

2x2, (28)

so that X = x, while P = p + iεm1ωx. Thus in this case

h(x,p) = p2

2m1
+

1

2
m1ω

2x2, (29)

so that μ = m1. The coupling to the vector potential is thus

− e

2m1
(A ·P + P · A) = − e

2m1
[(A · p + p · A) + iεm1ω(A · x + x · A)] . (30)

The required matrix element,

〈ψi |ηPA|ψj 〉 = 〈ϕi |pA|ϕj 〉, (31)

is then found from expressing each component of p on the right-hand side in terms of
creation and annihilation operators: p = i

√
(m1ω/2)(a† − a).

(ii) Q = Q(p) = −εx2/(m2ω).

This amounts to completing the square instead as

H = p2

2m2
+

1

2
m2ω

2

(
x +

iεp

m2ω

)2

(32)

≡ P 2

2m2
+

1

2
m2ω

2X2,

so that P = p, while X = x + iεp/(m2ω). Thus in this case

h(x,p) = p2

2m2
+

1

2
m2ω

2x2, (33)

with μ = m2. The coupling to the vector potential is thus

− e

2m2
(A · P + P · A) = − e

2m2
(A · p + p ·A). (34)

The matrix elements are still of the form of equation (31), but now the components of p
on the right-hand side are expressed as p = i

√
(m2ω/2)(a† − a).

The important thing to note is that one will get different transition rates in the two cases.
That is, the system is determined not only by the Hamiltonian H, but also by the particular
metric operator η used to restore unitarity.
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3.2. Imaginary cubic interaction

The more common situation is that H is of standard form, while h is a complicated non-local
object. For example, in the case of the (one-dimensional) prototype Hamiltonian

H = 1
2 (p2 + x2) + igx3, (35)

we have [13]

Q = −g
(

4
3p3 + 2xpx

)
+ O(g3), (36)

which gives rise [26, 27] to the observables

X = x + ig(x2 + 2p2) + g2(−x3 + 2pxp)

P = p − ig(xp + px) + g2(2p3 − xpx)

}
+ O(g3). (37)

Referring to equation (9), we can write H(x, p) as h(X, P ), where h(x, p) has been calculated
up to second order in g as [26, 27]

h(x, p) = 1
2 (p2 + x2) + 3g2 (

1
2x4 + S2,2(x, p) − 1

6

)
+ O(g4), (38)

where S2,2(x, p) = (x2p2 + xp2x + p2x2)/3.
From equation (38), we see that the minimal substitution P → P − eA(X) in h(X, P )

will give rise to additional couplings, of order g2, arising from the mixed term S2,2(X, P ).
To O(g) the matrix elements will be just 〈ψi |ηPA|ψj 〉. In order to calculate this we will

need the corrected eigenfunctions, which have a first-order contribution, namely

ψi(x) = ψ0
i (x) + g

∑
j �=i

〈
ψ0

j

∣∣ix3
∣∣ψ0

i

〉
ψ0

j (x) + O(g2). (39)

In this case, it is much easier [28] to work with H directly rather than with h.

4. Summary

For a standard Hermitian system the coupling to the electromagnetic potential, via the minimal
substitution p → p−eA(x), is induced by implementing the position-dependent phase change
ψ → eieα(x)ψ and demanding that the transformed Schrödinger equation be unchanged. For
a quasi-Hermitian system we find instead that the phase must be taken as α(X), where X is
the observable associated with x. The coupling to the electromagnetic vector potential thus
induced is via the minimal substitution P → P − eA(X) in H(x,p) written in terms of X
and P , where P is the observable associated with p.

The matrix elements governing electromagnetic transitions from one state of the system
to another depend on both H and the metric η. In the special case of the Swanson Hamiltonian,
when the equivalent Hermitian Hamiltonian h is local, this dependence is encoded in the mass
of the particle, which cannot simply be read off from H. Generically h is not local, and the
coupling is considerably more complicated.
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